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A model was derived for the temperature-dependent phase transition between

the high-temperature polymorphs of quartz (P6422) and tridymite (P63=mmc).

Only the Si framework is considered, and the transformation can be described as

a deformation of a homogeneous sphere packing with three contacts per sphere

(type 3/10/h1) in the common subgroup P6122 of P6422 and P63=mmc. The

proposed model guarantees the three-dimensional connection of the crystal

structure during the whole transformation process.

1. Introduction

Dependent on temperature and pressure, silica, SiO2, exhibits

several polymorphs. At ambient pressure and 846 K, it

undergoes a phase transition from the low- (�) to the high-

temperature (�) form of quartz. Between 1130 and 1743 K, the

high-temperature polymorph of tridymite is the stable phase,

and above 1743 K up to the melting temperature of 1986 K,

the high-temperature modi®cation of cristobalite exists (cf.

e.g. Putnis, 1992). In all these phases, the silicon atoms are

fourfold coordinated by oxygen atoms. The phase transition

from �- to �-quartz is displacive and can easily be described

using group±subgroup relations. As the tetrahedral linkage is

different in quartz, tridymite and cristobalite, during the

transformations between these phases bonds have to be

broken and, therefore, the phase transitions are reconstruc-

tive.

In a recent paper, Leoni & Nesper (2000) proposed a

mechanism for the phase transition between the high-

temperature polymorphs of quartz and tridymite. For both

structures, the authors calculated periodic equi-surfaces (cf.

von Schnering & Nesper, 1991) using the Fourier summation

over a small set of speci®cally selected structure factors as the

respective basis functions. Then, the four-coordinated silicon

network lies on one side of the resulting equi-surface, i.e.

within one of the two labyrinths, or ± in other words ± the

surface envelops the silicon network. Leoni & Nesper (2000)

modelled the phase transition within a common supercell of

quartz and tridymite. They assumed that the a and c axes of

both structures run parallel and that the c lattice parameter of

the intermediate arrangement is approximately quadruple

that of quartz and triple that of tridymite. Equi-surfaces for

the intermediate structures were calculated by weighted

addition of the basis functions of quartz and tridymite. Their

investigation showed that one connection per Si atom has to

be broken leading to a three-coordinated Si network in the

intermediate arrangement. By this method only the topology

of the silicon network can be modelled.

For the transition between the high-temperature poly-

morphs of tridymite and cristobalite, a pathway was proposed

by Sowa & Koch (2001). Symmetry relations between

diamond and lonsdaleite were investigated and a possible

transition model for the phase transformation was described

by means of sphere-packing deformations. Since the

arrangements of Si atoms in high-temperature tridymite and

high-temperature cristobalite correspond to the carbon

con®gurations in lonsdaleite and diamond, respectively, a

related model could be derived for the transition from high-

temperature tridymite to high-temperature cristobalite. The

transformation was described in space group Pnna, where the

intermediate Si arrangement corresponds to a homogeneous

sphere packing with three contacts per sphere. The movement

of the O atoms was expected to be similar to that described by

Leoni & Nesper (2000) for the transition between quartz and

tridymite.

Analogously, in the present paper a transformation

mechanism is described for the phase transition between

�-quartz and high-temperature tridymite using group-theor-

etical considerations and sphere-packing deformations. It is

not the aim of the present paper to contribute to the discus-

sions on the existence or non-existence of a stable high-

temperature modi®cation of tridymite. As a phase transition

from high-temperature tridymite into �-quartz apparently can

take place at least in the presence of certain impurities (cf. e.g.

Ray, 1947; FloÈ rke, 1959; FloÈ rke & Langer, 1972), it seems

worthwhile to compare the recently published model (Leoni &

Nesper, 2000) with a mechanism based on group-theoretical

considerations.
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2. Symmetry relations between the high-temperature
polymorphs of quartz and tridymite

The connectivity and the topological properties of the silica

structures may be discussed exclusively on the basis of the

silicon positions. For many purposes, it is not necessary to

consider the exact positions of the oxygen atoms, and so only

the silicon frameworks are considered in the following inves-

tigations. In both structures, the Si atoms correspond to

homogeneous sphere packings with four contacts per sphere.

�-Quartz crystallizes in space group P6422 (or in the

enantiomorphic group P6222). The Si arrangement corre-

sponds to a homogeneous sphere packing of type 4/6/h1

(Fischer & Koch, unpublished material; cf. Fischer & Koch,

1994). The atoms occupy e.g. the Wyckoff position 3(d) 222
1
2,

1
2,

1
6. Each silicon atom is surrounded by four other Si atoms

forming an orthorhombically distorted tetrahedron with four

equal distances from the central atom to the vertices. If the

axial ratio c=a equals 3
4 � 21/2 ' 1.0607, a con®guration with

minimal density, i.e. with maximal volume, is obtained. With

c=a � 1.09 (Kihara, 1990), the axial ratio of �-quartz deviates

only slightly from this ideal value.

The space group of tridymite is P63=mmc. Here, the silicon

atoms are arranged just as the carbon atoms in lonsdaleite.

They are located at position 4( f) 3m. 2
3,

1
3, z with z � ÿ0.062

(Kihara, 1978) and correspond to a homogeneous sphere

packing of type 4/6/h2 (Sowa, 2001; Sowa & Koch, 2001). In

the ideal atomic arrangement, each silicon atom has four other

Si neighbours forming an undistorted tetrahedron. It is

obtained for z = ÿ 1
16 = ÿ0.0625 and for the axial ratio

c=a = 2
3 � 61/2 ' 1.6330, which agrees quite well with the

observed value c=a � 1.64.

As for the phase transformation between diamond and

lonsdaleite (Sowa & Koch, 2001), a transition model was

derived that retains the three-dimensional connection of the

structure. It was assumed that during the transition all Si

atoms remain symmetrically equivalent, that only one contact

per Si atom is lost, and that the intermediate silicon

arrangement can be described by a homogeneous sphere

packing with three contacts per sphere. The only lattice

complex that allows such a transformation corresponds to the

general position 12(c) of P6122 (or P6522). Here, the idealized

silicon con®guration of �-quartz is found with c=a =

3 � 21/2 ' 4.2426, e.g. at x = 1
2, y = 1

2, z = 7
24 ' 0.29167, whereas

the undistorted lonsdaleite arrangement occurs with c=a =

2 � 61/2 ' 4.8990, e.g. at x = 2
3, y = 1

3, z = 5
16 ' 0.3125 (cf. Fig. 1).

Table 1
Symmetry operations and coordinates of neighbouring points that may
give rise to sphere contacts if the original sphere is located in the interior
or at the boundary of the parameter ®eld of type 3/10/h1.

Neighbour Coordinates Symmetry operation

A 1 ÿ x, ÿ x + y, 2
3 ÿ z 21 (1

2, y, 1
3)

1 ÿ x, 1 ÿ x + y, 2
3 ÿ z

B 1 ÿ x + y, y, 1
2 ÿ z 2 (1

2 + x, 2x, 1
4)

C ÿx + y, y, 1
2 ÿ z 2 (x, 2x, 1

4)

D 2 ÿ x, 1 ÿ x + y, 2
3 ÿ z 2 (1, y, 1

3)

E 1 ÿ y, 1 ÿ x, 5
6 ÿ z 2 (1 + x, ÿ x, 5

12)

F y, 1 ÿ x + y, ÿ 1
6 + z 61 (1, 1, z)

1 + x ÿ y, x, 1
6 + z

G y, ÿx + y, ÿ 1
6 + z 61 (0, 0, z)

x ÿ y, x, 1
6 + z

H �1 + x, y, z t (�1, 0, 0)

x, �1 + y, z t (0, �1, 0)

�1 + x, �1 + y, z t (�1, �1, 0)

I 2 ÿ x + y, y, 1
2 ÿ z 2 (1 + x, 2x, 1

4)

J ÿx, ÿx + y, 2
3 ÿ z 2 (0, y, 1

3)

K ÿy, ÿx, 5
6 ÿ z 2 (x, ÿx, 5

12)

L 1 + y, ÿx + y, ÿ1
6 + z 61 (0, ÿ 1, z)

ÿ1 + x ÿ y, ÿ1 + x, 1
6 + z

M 1 + y, 1 ÿ x + y, ÿ 1
6 + z 61 (1, 0, z)

x ÿ y, ÿ1 + x, 1
6 + z

N x ÿ y, ÿy, 1 ÿ z 2 (x, 0, 1
2)

O y, x, 1
3 ÿ z 2 (x, x, 1

6)

P 1 + y, ÿ1 + x, 1
3 ÿ z 2 (1 + x, x, 1

6)

Figure 2
Sphere packings in the surroundings of 3/10/h1.

Figure 1
Symmetry relation between the crystal structures of the high-temperature
polymorphs of quartz and tridymite. The transition from P6422 to P6222,
as shown in the diagram, requires an origin shift by (0, 0, ÿ1) referred to
the basis of P6422.



The three-coordinated sphere packing of the intermediate

con®guration belongs to type 3/10/h1. It can be realized with

highest symmetry in P6222 6( f) (cf. Koch & Fischer, 1995).

3. Sphere packings in the surroundings of 3/10/h1

In the following, each sphere-packing type is designated by a

symbol k/m/hn as was ®rst introduced by Fischer (1971): k

means the number of contacts per sphere, m is the length of

the shortest mesh within the sphere packing, h indicates that

the hexagonal/trigonal crystal family is the highest one for a

sphere packing of that type, and n is an arbitrary number.

In order to generate different sphere packings in the

general position 12(c) of P6122, four parameters may be

varied: the three positional parameters x; y; z and the axial

ratio c=a. Sphere packings of type 3/10/h1 occur if a reference

sphere with centre at x; y; z has three equidistant and sym-

metrically equivalent neighbours e.g. at 1 ÿ x, ÿx + y, 2
3 ÿ z;

1 ÿ x, 1 ÿ x + y, 2
3 ÿ z; and 1 ÿ x + y, y, 1

2 ÿ z. Equating the

squared distances from the original sphere to the neigh-

bouring ones yields the sphere-packing condition for 3/10/h1:

�x2 � y2 ÿ 4xyÿ x� 2y�a2 � �23 zÿ 7
36�c2 � 0: �1�

The parameter region of 3/10/h1 in P6122 has three degrees of

freedom and may be visualized as a three-dimensional poly-

hedron in the four-dimensional parameter space. In Fig. 2, it is

schematically represented by the Schlegel diagram of a poly-

hedron with 11 faces, 30 edges and 21 vertices. The interior of

this polyhedron corresponds to the parameter region of type

3/10/h1, whereas its faces, edges and vertices belong to the

adjacent parameter regions of sphere-packing types with

contact numbers higher than three: 11 regions with two

degrees of freedom (2.1 to 2.5), 30 with one (1.1 to 1.10) and 21

with no (0.1 to 0.5) degree of freedom. The parameter region

of 3/10/h1 and, consequently, the Schlegel diagram show

twofold rotation symmetry caused by the rotation 2(1
2, 0, z)

belonging to the Euclidean normalizer NE(P6122) = P6222

(a, b, 1
2c) (cf. International Tables for Crystallography, 1995,

Vol. A, ch. 15). Two parameter regions that can be mapped

onto one another by this rotation necessarily correspond to

the same sphere-packing type. The symbols of such regions are

distinguished by an asterisk. If two parameter regions can be

mapped onto one another by any other symmetry operation of

NE(P6122), their symbols differ by one or two primes.

Capital letters designate the centres of all those neighbour

spheres that may have contact with a reference sphere with

centre inside the parameter region of 3/10/h1 or on its

boundaries. They are listed in Table 1. The sphere-packing

types in the surroundings of 3/10/h1 are described in Table 2.

The second column enumerates the symmetry operations
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Figure 3
Sphere-packing deformations (a)±(e) and deformations of the corresponding Dirichlet domains ( f )±( j) along the proposed transition path for different
values of x. (a), ( f ) x = 1

2, ideal arrangement of �-quartz; (b), (g) x = 19
36� 0.5278; (c), (h) x = 5

9� 0.5556; (d), (i) x = 11
18� 0.6111; (e), (j) x = 2

3� 0.6667, ideal
arrangement of the high-temperature tridymite. Blue and green lines in (a)±(e) show the lost contacts in the ideal quartz and the ideal tridymite
con®guration, respectively. Accordingly, the blue and green coloured faces of the Dirichlet domains in ( f )±( j) are caused by the lost neighbours.
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giving rise to sphere contacts. The third column shows some

simple parameter conditions that must be ful®lled in addition

to (1). Column 4 gives the symbol of the sphere-packing type

and column 5 its minimal density �min. This quantity plays an

important role for the assignment of the sphere packings to

types. The last column displays the highest possible symmetry

for a sphere packing of that type. Table 2 refers to only one

half of the parameter ®eld of 3/10/h1. All parameter regions in

Fig. 2 marked by an asterisk are omitted.

4. The transition mechanism

As mentioned before, the ideal silicon arrangement in

�-quartz corresponds to sphere-packing type 4/6/h1, which

occurs e.g. at x = y = 1
2, z = 7

24 in P6122 12(c) with c=a = 3� 21/2'
4.2426 (cf. Fig. 1). The neighbour points labelled A, B and C

give rise to sphere contacts (2.1 in Table 2). In the undistorted

tridymite con®guration, which belongs to sphere-packing type

4/6/h2, the neighbours A, B and D yield sphere contacts (2.2).

It is found at x = 2
3, y = 1

3, z = 5
16 with c=a = 2� 61/2' 4.8990. As

the distances between adjacent Si atoms in �-quartz (cf.

Kihara, 1990) and high-temperature tridymite (cf. Kihara,

1978) have almost the same length, for the following consid-

erations the shortest distances are normalized to d = 1 and left

constant during the entire transformation.

Starting from quartz, the sphere contact that corresponds to

C is lost (and, of course, all symmetrically equivalent ones)

resulting in a sphere packing of type 3/10/h1 (3.1). When the

parameters of the ideal tridymite arrangement are reached,

symmetry operation D yields again a fourth sphere contact. In

principle, the transition path may be any one-dimensional

route through the three-dimensional parameter region of

3/10/h1. In order to select a particular path, in addition to (1)

two further parameter conditions must be chosen.

(i) The a lattice parameters of the high-temperature poly-

morphs of quartz (aq = 4.997, cq = 5.455 AÊ ; Kihara, 1990) and

tridymite (at = 5.052, ct = 8.270 AÊ ; Kihara, 1978) are very

similar, whereas three times the c parameter of tridymite is

about 13.7% longer than four times that of quartz. Therefore,

it is suggested that a remains unchanged during the phase

transition. Referred to a sphere diameter of 1, the lattice

parameters of an idealized quartz con®guration are aqi =
2
3 � 61/2 ' 1.6330 and cqi = 4 � 31/2 ' 6.9282 (referred to

P6122); those of an idealized tridymite con®guration are ati =

Table 2
Sphere-packing types in the surroundings of 3/10/h1.

Neighbouring points Additional conditions Sphere-packing type �min Maximal symmetry

3.1 AB 3/10/h1 0.25507 P6222 6( f )

2.1 ABC y= 2x ÿ 1
2 4/6/h1 0.39270 P6422 3(c)

2.2 ABD x= 2
3 4/6/h2 0.34009 P63=mmc 4( f )

2.3 ABE 4/4/h4 0.33170 P6222 6(i)

2.4 ABF 5/4/h7 0.47377 P6122 12(c)

2.5 ABG 5/3/h3 0.44912 P6122 12(c)

2.6 ABH 9/3/h3 0.64801 P6222 6( f )

1.1 ABEK y= ÿ x + 1
2 5/4/h6 0.51013 P6422 3(c)

1.10 ABCE y= 2x ÿ 1
2

1.2 ABCG y= 2x ÿ 1
2 6/3/h4 0.48934 P6122 12(c)

1.20 ABCF y= 2x ÿ 1
2

1.3 ABCJ x= 1
3, y = 1

6 5/3/h2 0.46271 P6122 12(c)

1.30 ABCD x= 2
3, y = 5

6

1.4 ABCH y= 2x ÿ 1
2 10/3/h3 0.69813 P6422 3(c)

1.5 ABDH x= 2
3 10/3/h2 0.66568 P63=mmc 4( f )

1.6 ABGJ x= 1
3 6/3/h5 0.48107 P6122 12(c)

1.7 ABDE x= 2
3 5/4/h5 0.40307 P6/mmm 2(c)

1.8 ABDF x= 2
3 6/3/h6 0.48107 P6122 12(c)

1.9 ABGK 6/3/h7 0.47900 P6122 12(c)

1.90 ABEF
1.10 ABEG 6/3/h3 0.45821 P6222 6(i)

0.1 ABEKN
1
2, 0, 3

8;
3
2 � 21/2 6/4/h3 0.51013 P6422 3(c)

0.10 ABCEO
1
2,

1
2,

7
24

0.2 ABEGK 0.43670, 0.06330, 0.37079; 2.0697 7/3/h6 0.53633 P6122 12(c)

0.20 ABCEG 0.43670, 0.37340, 0.29588

0.20 0 ABCEF 0.56330, 0.62660, 0.29588

0.3 ABCGJ
1
3,

1
6,

1
2 + (61/2 ÿ 3 � 31/2)=14; 3.2080 7/3/h7 0.50736 P6122 12(c)

0.30 ABCDF
2
3,

5
6,

1
2 + (61/2 ÿ 3 � 31/2)=14

0.4 ABCHJ
1
3,

1
6, 1 ÿ 1

2 � 21/2; 2 � 61/2 + 3�31/2 11/3/h1 0.71868 P6122 12(c)

0.40 ABCDH
2
3,

5
6, 1 ÿ 1

2 � 21/2

0.5 ABGJK
1
3, 0, 1

3; 2 � 21/2 7/3/h8 0.49365 P6122 12(c)

0.50 ABDEF
2
3,

2
3,

1
3



2
3 � 61/2 ' 1.6330 and cti = 8. Then, the ratio cti=cqi = 1.1547

agrees quite well with that of the multiples of the c parameters

of quartz and tridymite. Therefore, as the ®rst additional

condition

a � constant � 2
3� 61=2 �2�

was chosen.

(ii) As the second additional condition,

y � 1ÿ x �3�
was selected. As a consequence of (3), as many interatomic

distances as possible become equal in length during the phase

transition.

Equations (1), (2) and (3) together ®x the transition path

completely. Figs. 3(a)±(e) illustrate the sphere-packing defor-

mations for some selected values of x. The three shortest

distances within a sphere packing of type 3/10/h1 are drawn in

black, the additional shortest distance within an ideal quartz

or an ideal tridymite con®guration is marked in blue or green,

respectively. These two distances become equal at x = 5
9 �

0.55556 (Fig. 3c).

The sphere-packing deformation and the changes in the ®rst

and the second coordination shell are also re¯ected in the

alterations of the corresponding Dirichlet domains (Figs. 3f±j).

The Dirichlet domain of the ideal quartz con®guration (Fig.

3f) is a truncated tetrahedron with 14 faces: four large hex-

agons, four triangles and four quadrangles of medium size, and

two small quadrangles. All faces are caused by so-called direct

neighbours, i.e. each line joining the central atom with one of

these neighbours passes through the corresponding face. The

Dirichlet domain of an ideal tridymite con®guration (Fig. 3j) is

a truncated tetrahedron with eleven faces: three large hex-

agons, one large nonagon and seven small triangles. Only the

four large faces and one of the triangles are caused by direct

neighbours. In Figs. 3( f)±(j), the three large faces that belong

to the sphere-packing neighbours of 3/10/h1 are drawn in grey,

whereas those faces that are related to the blue and green lines

in Figs. 3(a)±(e) are coloured blue and green, respectively. The

blue face develops from an edge of the tridymite polyhedron,

quite similar to that previously described for the diamond±

lonsdaleite transition (Sowa & Koch, 2001). The large green

face of the tridymite polyhedron, however, originates from

one of the medium-sized quadrangles of the quartz poly-

hedron.

Figs. 4 and 5 show the dependence of the coordinate z and

the lattice parameter c, respectively, on the x coordinate.
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Figure 5
Variation of the lattice parameter c depending on x along the proposed
transition path.

Figure 6
Variation of the sphere-packing density � depending on x along the
proposed transition path.

Figure 4
Variation of the coordinate z depending on x along the proposed
transition path.
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Owing to (2), the axial ratio c=a and the unit-cell volume V

show an analogous dependence on x to c. Fig. 6 displays the

variation of the sphere-packing density � along the transition

path. The changes of the distances between the original sphere

and some neighbouring spheres during the phase transition

are plotted in Fig. 7.

5. Discussion

In the present paper, a model for the transition between

�-quartz and high-temperature tridymite is proposed that

shows some interesting properties. During the whole trans-

formation process, all silicon atoms remain symmetrically

equivalent with respect to the common subgroup P6122 of

P6222 and of P63=mmc.

The silicon atoms in the quartz structure are arranged in 12

layers perpendicular to c (referred to P6122), and each silicon

atom is connected via oxygen atoms with two silicon atoms

from both neighbouring layers. During the phase transition,

one of these four SiÐOÐSi links per Si atom must be

removed. However, bonds are broken only between every

other pair of Si layers and, for a certain pair of layers, all

broken bonds run parallel (cf. Fig. 3a).

The three-dimensional connection of the crystal structure

via SiÐOÐSi bonds is preserved during the entire transfor-

mation process, and the intermediate silicon arrangements

give rise to sphere packings of type 3/10/h1 (Figs. 3b±d). This

type is the hexagonal analogue (cf. Wells, 1975, p. 96; Koch &

Fischer, 1995; O'Keeffe & Hyde, 1996, p. 298) of the tetragonal

type of sphere packings 3/10/t4 (cf. Fischer, 1991), which

corresponds to the silicon arrangement in �-ThSi2 (Koch,

1985). A sphere packing of type 3/10/h1 contains zigzag chains

parallel to h100i arranged in double layers perpendicular to c.

Six such double layers exist within one unit cell of P6122, and

all chains from a certain double layer run parallel. Each chain

is alternately connected to a chain from the layers above and

below. In the quartz structure, each zigzag chain lies in a plane

parallel to c. During the transition, each chain is rotated

around its middle axis without any deformation (cf. Figs. 3a±

e). As a consequence, the distance between the two nearest

neighbours labelled A in Table 1 does not change along the

entire transition path, i.e. dAA = 31/2. In the tridymite structure,

the silicon atoms also form 12 layers perpendicular to c but, in

contrast to quartz, each silicon atom is connected via one

SiÐOÐSi bond to the ®rst neighbouring layer and via three

such bonds to the other.

At a certain point in the course of the transition, namely for

x = 5
9, y = 4

9, z = 0.30013 and c=a = 5.1234, the two next nearest

neighbours (labelled C and D in Table 1) are equidistant from

the central atom (cf. Figs. 3c and 6). They are located at

different sides of the almost isosceles triangle formed by the

three nearest neighbours, and their distances are only 37%

longer than the shortest three. One of these two neighbours

originates from the ®rst coordination shell in the quartz

structure (x = 1
2), the other one gives rise to the newly formed

bonds in the tridymite structure (x = 2
3). At x = 5

9 ' 0.55556,

each atom lies nearly (but not exactly) in the same plane with

its three nearest neighbours. The sphere-packing density

amounts to � = 0.32519, whereas the minimal density for type

3/10/h1 is only �min = 0.25507 (Koch & Fischer, 1995). It is

found at x = 1
2, y = 0, z = 5

16 and c=a = 3 � 21/2 ' 4.2426.

O'Keeffe & Hyde (1996, p. 298) presented a sphere packing of

this type with all angles being 120�. Its density is � = 0.26871.

Within the present parameter ®eld, it occurs at x = 1
2, y = 0, z =

11
36 ' 0.30556 and c=a = 3 � 31/2 ' 5.1962. For the proposed

transition path, the ®rst coordination shell is entirely ¯at at

x = 0.57834 (� = 0.31606). This parameter corresponds neither

to the sphere packing with minimal density nor to that with all

angles being 120�.
The proposed transition model is diffusionless, i.e. only

relatively small cooperative movements of the atoms are

necessary. It results in a parallel orientation of the hexagonal

unit cells of quartz and tridymite.

For the migration of the oxygen atoms, Leoni & Nesper

(2000) have proposed a two-O-atom four-centre transition

path. The present paper only describes the movement of the

silicon atoms under preservation of the symmetry P6122. If

one wants to regard in addition the migration of the oxygen

atoms, reduction of the symmetry to the translational-

equivalent subgroup P61 of P6122 is necessary. Here, the 12

silicon atoms per unit cell split into two symmetrically

different kinds. In tridymite as well as in quartz, each Si atom

of one kind has four neighbouring atoms of the other kind and

vice versa, i.e. each oxygen atom connects two silicon atoms of

different kind. All O atoms belonging to the breaking bonds in

the Si net are symmetrically equivalent in P61. During the

Figure 7
Variations of the interatomic distances depending on x along the
proposed transition path. The blue and the green lines mark the distance
from the central sphere to the lost neighbour in the ideal quartz and in the
ideal tridymite con®guration, respectively.



phase transition, they may remain, for instance, near the Si

atoms of the ®rst kind, whereas the Si atoms of the second

kind have only three nearest O neighbours and interchange

the fourth one.

The calculations of Leoni & Nesper (2000) also result in an

intermediate arrangement between the high-temperature

polymorphs of quartz and tridymite with a 3-coordinated

silicon network. The authors compared this arrangement with

the con®guration of the B atoms in B2O3, which form a

distorted heterogeneous sphere packing with symmetry P31.

As has been already mentioned by O'Keeffe & Hyde (1996,

p. 298), this heterogeneous sphere packing corresponds to

a homogeneous one of type 3/10/h1. O'Keeffe & Hyde,

however, ascribed P3112 as maximal possible symmetry to this

type instead of P6422 or P6222.

At a ®rst glance, the intermediate structure proposed by

Leoni & Nesper (2000) seems to be very similar to that

described in the present paper. Leoni & Nesper, however,

claim the intermediate symmetry is only P21. Their calcula-

tions should result in an intermediate space group which is an

intersection group of the space groups of the high-tempera-

ture phases of tridymite and quartz with parallel oriented unit

cells, i.e. of P63=mmc and of P6222 or P6422. Furthermore,

a(P63=mmc) = a(P6222) and 3c(P63=mmc) = 4c(P6222) must

hold. The intersection group, however, is not unique but

depends on the relative origin choices for the unit cells of

tridymite and quartz, i.e. on the phases of the re¯ections

chosen for the calculation of the periodic equi-surfaces. The

origin choice for quartz and tridymite that is used in the

present paper results in P63=mmc (3c) \ P6222 (4c) = P6522

or in P63=mmc (3c) \ P6422 (4c) = P6122. Other choices

may yield e.g. P65 or P61, C2221, C2, P21 or even P1. An

intermediate space group P21 as reported by Leoni &

Nesper (2000) corresponds to a mutual origin shift, e.g. by

(1
2, 0, z).

Orientation relations between high-temperature tridymite

and �-quartz seem to be discussed very rarely. Ray (1947)

studied quartz paramorphs after tridymite from Home,

Colorado, USA. He found that the optic axis of quartz devi-

ates from the direction normal to the basal face of the former

tridymite crystals in a range between 14 and 83� with an

average of about 61�, which `might mean that the (10�11) face

of tridymite has become the (0001) of quartz'. FloÈ rke (1959)

also investigated quartz paramorphs after tridymite from the

Euganean Hills, Italy. His measurements of the respective

angle accumulated in a value of 52� but also spread over a

wide range. Both results are not compatible with the model

discussed in the present paper. Nevertheless, it seems to be not

unlikely that the proposed transition mechanism may be

realized under speci®c conditions because of the very short

migration paths of all atoms.
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